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Abstract
The shrunk loop theorem proved here is an integral identity which facilitates
the calculation of the relative probability (or probability amplitude) of any
given topology that a free, closed Brownian (or Feynman) path of a given
‘duration’ might have on the twice punctured plane (plane with two marked
points). The result is expressed as a ‘scattering’ series of integrals of increasing
dimensionality based on the maximally shrunk version of the path. Physically,
this applies in different contexts: (i) the topology probability of a closed ideal
polymer chain on a plane with two impassable points, (ii) the trace of the
Schrödinger Green function, and thence spectral information, in the presence
of two Aharonov–Bohm fluxes and (iii) the same with two branch points of
a Riemann surface instead of fluxes. Our theorem starts from the Stovicek
scattering expansion for the Green function in the presence of two Aharonov–
Bohm flux lines, which itself is based on the famous Sommerfeld one puncture
point solution of 1896 (the one puncture case has much easier topology, just
one winding number). Stovicek’s expansion itself can supply the results at
the expense of choosing a base point on the loop and then integrating it away.
The shrunk loop theorem eliminates this extra two-dimensional integration,
distilling the topology from the geometry.

PACS numbers: 05.40.Jc, 03.65.Vf

1. Introduction

The ‘shrunk loop theorem’ presented here is an integral identity conjectured by the last two
authors in 2001, but not published. Numerical evaluation of the integrals for the simplest case
had provided convincing evidence of the identity, but a proof was lacking. An analytical proof
of the conjecture has been provided by the first author, covering all numbers of scatterings. It
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Figure 1. Schematic picture of the two stages in the reduction of the (Feynman, infinite-
dimensional) integral over all Brownian loops of a particular topology (left). First Stovicek’s
scattering expansion reduces it to an infinite set of terms (middle column) each involving an
integral of finite dimensionality: two spatial dimensions indicated by the star and one more for
each ‘scatter’. Some examples of these with their number of integrations are shown. Then (right
column) our Shrunk loop theorem eliminates (i.e. performs implicitly) the two spatial integrations
and combines together those pictures of the middle column which have the same shrunk shape
if the star, imagined on elastic strings, is released. The intermediate legs passing back and forth
between the points are supposed unchanged by the release even if they are mere u-turns. Note that
the number of scatters in the pictures being combined need not be the same but can differ by one
as in the top example shown.

is involved and takes up most of this paper (section 3), but the theory itself (sections 1 and 2)
is not difficult to describe as follows.

The theorem facilitates the calculation of the relative probability (or probability amplitude)
of any given topology that a free, closed Brownian random walk (or Feynman path [4]) of given
‘duration’ might have on a twice punctured plane (plane with two marked points), conditional
on the requirement that the loop encloses at least one point. It expresses the result as a ‘scatter’
series of integrals of the kind (2.8) based on ‘shrunk’ loop scatter paths. The minimal one of
these loops is the path which a stretched rubber band, originally placed in the shape of the
random walk, would adopt if released; further terms in the series are represented by the loops
going back and forth any number of times between both points, and having the same topology
(see right column of figure 1).

Physically, the theorem applies, on the one hand, directly to realizations of closed
Brownian paths such as ideal polymer chain loops in a plane. On the other hand, with
interpretation as Feynman paths (imaginary diffusion coefficient, or time) the theorem applies
to wave propagation on a plane governed by the Schrödinger equation, in the presence, for
example, of two Aharonov–Bohm flux lines perpendicular to the plane. Equally well it
applies, by the Fourier transformation, to the Helmholtz equation (the time independent wave
equation) on a Riemann surface with two branch points joined by a branch cut (for instance,
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the surface for
√

1 − z2). In these wave cases the sum over all closed loops gives the trace of
the propagator, or of the Green function, and thus spectral information. The Riemann surface
result, for instance, is a first step in the quest for an exact scattering theory for the spectrum of
polygon billiards.

The starting point for our analysis, in which the shrunk loop theorem only enters at
the second stage, will be the scattering expression for the propagator on the twice punctured
plane. The puncture points do not themselves scatter (they are just marks on the free plane,
so the propagator is just the free propagator); rather, the scattering expression serves to
classify the paths according to their topology. The simpler once punctured plane was solved
famously by Sommerfeld in 1896 [7, 8]. This was not in the context of Brownian paths
but of waves. His solution supplies the exact Green function for waves obeying the time
independent wave equation, or Helmholtz equation (∇2ψ + k2ψ = 0) on a flattened helicoid
surface (Riemann surface of log z). The Green function for the once punctured plane can
be understood as a discrete sum over classes of paths, each having a different topology.
Returning to the twice punctured plane, there is a natural generalization of the Sommerfeld
solution as a scattering series due to Stovicek [9] who gave the wave (quantum) propagator
and the Green function for a plane with two Aharonov–Bohm flux lines. The series can also
be understood as a sum over paths, which inherits the topological character of the Sommerfeld
solution.

The Green function is related to the Brownian propagator (the end-to-end displacement
probability distribution) of an open Brownian path, by the Fourier transformation. Specifically
if the mean square end-to-end displacement is denoted by 2t, where t is referred to as its ‘time’
duration, the propagator K(r, r′, t) is the Fourier transform, with respect to imaginary time,
of G(r, r′, E) with E = k2/2. The Feynman integral over all loops that we will require for
the probability calculation is obtained by spatial integration of the return propagator (with
coincident end points) K(r, r, t). Since the presence of a special point (the coincident end
point) is artificial, one should expect that performing the spatial integration over the end point
position would yield a simple result of recognizable form. This is what the shrunk loop theorem
achieves; the resulting expression has two fewer integrations and consists in essentially the
same scattering formula applied to the shrunk loop rather than the one containing the moveable
end point.

2. The shrunk loop theorem

By way of introduction we first analyse the once punctured plane.

2.1. Once punctured plane

A flattened infinite helicoid (i.e. Riemann surface for log z) captures topology for the once
punctured plane (it is its ‘covering space’): given two layers of the helicoid, all paths going
from one layer to the other have a certain topology. One circuit of the helicoid axis is
distinguished from a circuit not enclosing the axis by having its end points on separate layers.
The Green function G(r, r′, E) for waves on a flattened infinite helicoid was famously obtained
by Sommerfeld in 1896 [8]; see also Edwards [3] and Berry [1]. Following Stovicek [9], the
solution for its Fourier transform, the propagator K(r, r′, t), can usefully be expressed in the
following way, as a sum of contributions corresponding to the different topologies.

The propagator on the plane between r and r′ is Kfree(r, r′, t) = (1/2πt) exp(−|r −
r′|2/2t). This can be alternatively expressed in terms of an imagined uniform velocity
v = (r′ − r)/t as Kfree(r, r′, t) = (1/2πt) exp(−|v|2t/2). On the helicoid, for two given



2916 O Giraud et al

points r and r′, the scattering propagator (here there genuinely is scattering on the helicoid
axis) can be expressed in terms of two straight legs, one from r to the axis and one from the axis
to r′, connected by a path winding around the axis. Each leg is imagined to have a hypothetical
positive duration tj , to be integrated over (with the condition that the sum of the durations is
t), and thus a certain (uniform) velocity; the velocity vector will be represented by a complex
number vj = vjx + ivjy . The scattering propagator will be expressed as a product of two free
propagators (1/2πt0) exp(−|v0|2t0/2) and (1/2πt1) exp(−|v1|2t1/2) associated with the two
straight legs, and of a scattering factor (−2π)/[(ln(v1/v0))

2 + π2] supplied by Sommerfeld
via Stovicek, depending on the velocity ratio after and before the scatter. The imaginary part
of the logarithm is the angle between the velocity vectors and counts the windings of the path
around the axis. It should be mentioned incidentally at this point perhaps that a technical
benefit of studying closed paths is that there is no ambiguity in the definition of the winding
number M; the winding number of a closed path is convention independent so that branch cut
considerations are avoided.

If the initial and final points r and r′ of the path are mutually visible on the helicoid then
one has to add the free space plane propagator from r to r′. Let us call M the number of layers
of the helicoid that need to be pierced to bring r′ onto the layer visible to r. The propagator
for the helicoid is then equal to

K0(r, r′; t) + Kfree(r, r′; t) if r and r′ are on the same layer (M = 0) (2.1)

KM(r, r′; t) =
∫ ∞

0
dt0

∫ ∞

0
dt1

1

2πt0
e−r2

0 /2t0

× 2π(
φ + i ln r1t0

r0t1

)2 − π2

1

2πt1
e−r2

1 /2t1δ(t0 + t1 − t) otherwise

where φ is the angle between the two legs including windings (−∞ < φ < ∞).
If we consider a propagation on the free infinite plane, we can still classify paths according

to their winding around a fixed point in the plane. Each scattering term KM can be interpreted as
a contribution to the total (non-scattering) propagator on the plane coming from the trajectories
winding M times around the marked point. The free propagator on the plane, which is the sum
over all paths from r to r′ considered on the plane, Kfree(r, r′, t), is equal to the sum over the
same set of paths considered on the helicoid where the paths may arrive on any layer, that is
Kfree(r, r′, t) + K0(r, r′, t) +

∑
M �=0 KM(r, r′, t). Therefore

∑
M

KM(r, r′, t) = 0. (2.2)

Note that this property can be verified directly from equation (2.1): the diffraction coefficient
in (2.1) is of the form 1/((2Mπ + x)2 − π2) and gives 0 when summed over all M. In the case
we are interested in, where r = r′ (the return propagator for a closed loop), this relation will
be useful to normalize the probability for a loop to have a given topology of winding around a
‘puncture’ (marked) point. The probability for each different topology is proportional (up to
a constant) to the trace (that is, the integral over the plane) of the return propagator associated
with this topology. The normalization constant is given by the sum of contributions of all
non-detached topologies

∑
M �=0 KM(r, r, t) integrated over r. According to (2.2), this sum is

just minus the detached M = 0 value, K0(r, r, t).
For the once punctured plane, the probabilities

∫
KM are easy to evaluate analytically and

we do so now in useful preparation for the twice punctured plane. For the term with winding
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number M the trace
∫
KM of the propagator, using polar coordinates, is∫ ∞

0
dr

∫ 2π

0
r dθ

∫ ∞

0
dt0

∫ ∞

0
dt1

1

2πt0
exp

[
−1

2
r2/t0

]

× −2π

[(ln(t0/t1) − i2Mπ)2 + π2]

1

2πt1
exp

[
−1

2
r2/t1

]
δ(t0 + t1 − t)

=
∫ ∞

0
dr

∫ 2π

0
r dθ

∫ ∞

0
dt ′
∫ ∞

−∞
ds

1

2π

1

2πt ′
exp

[
−2r2

(
cosh

s

2

)2/
t ′
]

× −2π

[(s − i2Mπ)2 + π2]
δ(t ′ − t) (2.3)

after the change of variables s = ln(t0/t1), and t ′ = t0 + t1, giving Jacobian t0t1/t ′. The r and
θ and then t′ integrals can be evaluated, and the denominator can be split by partial fractions.∫ ∞

−∞
ds

1

8π

1(
cosh s

2

)2 ×
{

1

[2Mπ + i(s + iπ)]
− 1

[2Mπ + i(s − iπ)]

}
. (2.4)

Shifting s by ±i(π − 0) by a change of variables, oppositely for each of these terms to make
the denominators equal, gives[∫ ∞−iπ

−∞−iπ
ds −

∫ ∞+iπ

−∞+iπ
ds

]
1

8π

1(
sinh 1

2 s
)2 1

[2Mπ + is]
. (2.5)

The pair of contours can be closed at infinity, and the only pole enclosed is the double one at
the origin s = 0 for M �= 0; this pole is triple for M = 0. Finally,∫

d2rKM(r, r; t) =
∣∣∣∣∣1/(4π2M2) M �= 0

− 1
12 M = 0.

(2.6)

As expected, the sum over M yields zero. Therefore the M = 0 term (which is negative
in contrast to the rest) serves, with its sign reversed, as a normalization for the M �= 0
contributions.

2.2. Twice punctured plane

In the case of the twice punctured plane, the evaluation of the relative probability for each
different topology of path requires the calculation of the analogue of KM , that is the contribution
from each topology to the propagator K(r, r′, t) of the twice punctured plane. This propagator
cannot, as far as is known, be expressed in finite terms, but it was obtained as an exact
scattering series by Stovicek in 1989 [9]. Actually the closely related problem in optics of
wave diffraction by a slit had been solved in a different way as an exact scattering series by
Schwarzchild (of relativity fame) in 1902 [6], and the results of the two series specialized to
this case are equal, term by term [5]. In the Stovicek series, the wave from the source point
r scatters alternately from the two points and after some number of such scatters goes to the
observation point r′.

A contribution to the propagator K(r, r′, t) corresponding to a given topology can be
depicted as a sequence of straight legs, with all but the first and last being back and forth
between the puncture points. As before, between successive legs the path winds around one of
the scattering points some number of times. For closed paths, which will be our interest, this
number is convention independent, so branch cut considerations are again unnecessary. The
propagator for a given scatter sequence is formed as in the one puncture plane by ascribing a
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hypothetical duration to each leg and integrating over all the durations. The integrand is the
product of alternating leg, scatter, leg, scatter . . . , leg factors described above

K(r, r′; t) =
∫ ∞

0
dt0 dt1 · · · dtn

1

2πt0
e−r2

0 /2t0
2π(

φ1 + i ln r1t0
r0t1

)2 − π2

1

2πt1
e−r2

1 /2t1

× 2π(
φn + i ln rntn−1

rn−1tn

)2 − π2

1

2πtn
e−r2

n/2tn δ(t0 + t1 + · · · + tn − t). (2.7)

Here φi are the angles between consecutive legs, including windings (−∞ < φi < ∞), and
rj are the lengths of the successive legs. After setting the ln of the ratios of speeds equal to
new variables sj , the propagator reads

1

2πt

∫ ∞

−∞
ds1 ds2 · · · dsn e−R2/2t

n∏
i=1

1

(φi + isi)2 − π2
(2.8)

where R2 = R2(s1, s2, . . . , sn) is defined by

R2 ≡ (r0 + r1 es1 + r2 es1+s2 + · · · + rn es1+s2+···+sn )

× (r0 + r1 e−s1 + r2 e−s1−s2 + · · · + rn e−s1−s2−···−sn ) (2.9)

and r1 = r2 = · · · = rn−1 is the distance between the two points. Again, the propagator on
the covering space ‘captures’ the topology, and the trace of the return propagator can be seen
as the sum over all the paths going from r to itself on the twice punctured plane with a given
number of windings around the two points.

2.3. Shrunk loop theorem

We are interested in the probability for a closed path to have a given topology. Each probability
is a sum of contributions which can be written as the trace of return propagator

∫
K(r, r; t),

where K is of the form of equation (2.8). The trace is of two types, as illustrated in figure 2,
depending on whether the number of scatters is even or odd. For the even type the trace term
has its first and last legs from different scatter points, whereas for the odd type the first and last
legs come from the same scatter point. To obtain the probability, we sum over all terms that
give the same shape when their first and last legs are shrunk (see figure 2). The shrunk loop
theorem, which will be proved in section 3, states that the traces of terms of the form (2.8) add
up to terms of the form (2.10), which have a natural diagrammatic interpretation as shrunk
scatter loops. The probability for a closed path to have a given topology will then be a sum
over all the ‘shrunk’ terms (2.10) corresponding to the same topology (see the third column
in figure 1).

Before stating the theorem, we need to enumerate the terms that will give the same shape
when their first and last legs are shrunk. Let 2a be the distance between the two puncture
points. Consider a scatter shrunk loop. Define [M1M2 · · · sM2n] as being its successive
anticlockwise winding numbers (e.g., those of the right-hand column of figure 1 are [1, 1],
[1, 1, 0, 0] or [0, 0, 1, 1], [1, 2, 0, −1] or [0, −1, 1, 2]). We will call this sequence the ‘scatter
winding sequence’.
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Figure 2. The shrunk loop theorem is shown here for a low scatter case with winding sequence
[1, 2]. An expression associated with the shrunk scatter loop path on the right has been proved
equal to the sum of the contributions of all the ‘related’ trace integrations over the plane symbolized
by stars. ‘Related’ means having the same shrunk shape if the star is imagined released with the
first and last legs, attached to it considered as stretched elastic strings. The first two terms on the
left are even type (two scatters). The rest are odd type (three scatter) terms. There is not just one,
but an infinite sequence of odd terms associated with each of the two scatter points, with the double
string from the star winding any number of times around the scattering point.

There are as many even scatter terms as there are legs of the shrunk scatter loop (two in the
case of figure 2), since the star (representing the starting and end point) can be associated with
any one of the legs : this corresponds to different cyclic permutations of the scatter winding
sequence. For the odd scatter terms, once again there is an association between the star and
any one of the scatters, the star interrupting, as it were, a winding. The choice of the different
scatters corresponds to cyclic permutations of the scatter winding sequence. Actually each
such interruption can happen in an infinite number of ways as shown in the figure, and the
shrunk loop theorem sums their contributions.

The theorem can now be stated: if S[M1M2···M2n] is the sum over cyclic permutations
of the indices of the even trace terms E12···2n (whose analytical expression is given by
equation (3.41)) and of the odd trace terms O12···2n (given by equation (3.42)), then

S[M1M2···M2n] =
∫ ∞

−∞
ds1 ds2 · · · ds2n

× exp

[
− 1

2t
(2a + 2a es2 + · · · + 2a es2+···+s2n )(2a + 2a e−s2 + · · ·

+ 2a e−s2−···−s2n )

] 2n∏
i=1

1

(2Miπ + isi)2 − π2
× δ(s1 + s2 + · · · + s2n) (2.10)

and it turns out that this expression can be read directly from the picture of the scatter shrunk
loop: it is exactly the scatter propagator (2.8) for r = r′ with its integrand multiplied by 2πtδ.

It should be remarked that in the ‘semiclassical’ limit (which is the limit of short duration
t, or equivalently, widely separated puncture points) the shrunk loop theorem reduces to the
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formulae of semiclassical mechanics [2, 5, 10] for the trace of the Green function. There is
then fast convergence of the scattering series with the higher terms vanishing rapidly.

2.4. Probabilities and normalization

As we have already stated, a task remains after the application of the shrunk loop theorem,
and separate from it, in order to find the probability of a topology, namely the enumeration of
the different shrunk loop diagrams (each, by use of the theorem, having summed a collection
of scatter diagrams) corresponding to the topology, as in figure 1. The shrunk Brownian loop
itself gives the minimal shrunk scatter loop (since the same shape arises from shrinking the
two end legs of the closed path associated with the minimal return scatter propagator with the
specified topology). It has a winding sequence comprising an even number of winding integers
with no zeros, and with even cyclic permutations counted as equivalent since any (leftward)
leg could be considered the starting leg. Higher terms are associated likewise with shrinking
the two end legs of higher scatter paths. These have the same topology but contain u-turns,
that is turns with zero windings (bottom right picture of figure 1, for instance). Therefore, their
scatter winding sequence comprises an even number of winding integers with zeros allowed
(again with even cyclic permutations counted as equivalent). Each zero corresponds to a
u-turn.

The topology winding sequence for any given scatter winding sequence is found by
applying a straightforward reduction rule to remove the zeros (i.e. u-turns): any zero and its
two neighbour integers can be replaced by a single integer, their sum. For example, [1, 2,
0, −1] gives the topology [1, 1]. The reduction rule may need applying more than once, thus
a shrunk loop winding sequence [3, 0, 1, −8, 0, 0] has six legs and reduces to [4, −8, 0, 0]
and then to [4, −8] which specifies the topology (the order in which zeros are eliminated does
not matter). What we require to generate all shrunk loop scatter sequences from the minimal
one representing the topology is the reverse application of this rule, expanding a winding
number M to a winding sequence N, 0, M−N and applying this expansion repeatedly. An
explicit algorithm to generate each different sequence only once (with even cyclic permutations
equivalent) would be desirable, but in favourable circumstances (semiclassical limit a2/t � 1)
the contribution of shrunk scatter loops with many extra legs forming u-turns (that is with
many zeros) is small and can be neglected. Moreover for the terms obtained by a single
application of the expansion rule, one extra back and forth, the sum over N can be evaluated by
use of the result

∑
m 1/(a + m) = π cot πa. It remains to find the normalization, if absolute

rather than just relative probabilities are required.
The normalization is found by the same trick as was used in the once punctured plane.

There the sum of contributions of all scatter winding numbers M with −∞ < M < ∞ (that
is the scatter part of the propagator on the plane) was zero, and therefore the contribution
of the detached shrunk scatter loop with winding number zero equalled (minus) the sum of
all the rest. Similarly now on the twice punctured plane, the propagator must have zero
scatter part (because the punctures are just marks). That is the detached topology scatter
contributions must equal minus the sum of the attached ones. After spatial integration,
therefore, it acts as a normalization for the absolute probabilities of the attached loops. The
detached topology scatters begin with the non-winding single scatters. These contributions
are evaluated separately for each of the two points, ignorant of the other, just as for the once
punctured plane above. They give the contribution 2 × 1

3 . To this must be added the sum of
contributions for two or more scatters. These come from all detached shapes of shrunk scatter
loops ([0, 0]; [0, 0, 0, 0], [0, m, 0, −m] and [m, 0, −m, 0] for m �= 0; and shapes of more than
four legs). So the normalization evaluation is no more difficult than the evaluation of any other
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individual topology. Again, in favourable cases, only the lowest order scattering sequences
will contribute significantly to the sum.

3. Proof of the theorem

We will now prove the shrunk loop theorem for any given scattering winding sequence
[M1M2 · · ·M2n], beginning with the slightly simpler case where the winding sequence is
given by only two integers. An illustration of this two-scatter case is given in figure 2.

3.1. Two-scatter case

We consider paths that are winding M1 times around the left obstruction point and M2 times
around the right one. The shrunk loop theorem states that E + O = S, where all these are
functions of the continuous variables t and a with the following definitions:

Even term E = E12 + E21, with

E12 =
∫ ∞

−∞

dx dy

2πt

∫ ∞

−∞
ds1 ds2 exp

[
− 1

2t
(r0 + r1 es1 + r2 es1+s2)(r0 + r1 e−s1 + r2 e−s1−s2)

]

× 1

(2M1π + i(s1 + iθ1))2 − π2

1

(2M2π + i(s2 + iθ2))2 − π2
(3.1)

with the meaning of the symbols supplied by the figure,

θ1 θ2

y

x

r0 r2

r1=2a

Odd term O = O12 + O21, with

O12 =
∫ ∞

0

∫ 2π

0

rdr dθ

2πt

∫ ∞

−∞
ds1 ds2 ds3

× exp

[
− 1

2t
(r0 + r1 es1 + r2 es1+s2 + r3 es1+s2+s3)(r0 + r1 e−s1 + r2 e−s1−s2 + r3 e−s1−s2−s3)

]

×
∞∑

N=−∞

1

(2Nπ + i(s1 + iθ))2 − π2

1

(2M2π + is2)2 − π2

1

(2(M1 − N)π + i(s3 − iθ))2 − π2

(3.2)

with the meaning of the symbols supplied by the figure,
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r1=r2=2a

θ

r0=r3

(r,θ)

and shrunk-loop term

S =
∫ ∞

−∞
ds1 ds2 exp

[
− 1

2t
(r1 + r2 es2)(r1 + r2 e−s2)

]

× 1

(2M1π + is1)2 − π2

1

(2M2π + is2)2 − π2
δ(s1 + s2) (3.3)

with the meaning of the symbols supplied by the figure,

r1= r2=2a x

y

To prove the desired equality both O and E will be reduced to double integrals, like S.

3.1.1. Reduction of the even-term E. The strategy here is to remove the position dependence
(i.e. x, y or θ1, θ2) from the denominator terms of the integrand and put it instead into the
exponent and the limits of integration. By suitable shifting, the dependence of the limits on
position can be reduced first to a discrete function of a position and then none at all. The
integral over the x, y plane can then be evaluated leaving only the integrals over s1 and s2.

Introduce, following equation (2.7),

R2(s1, s2) ≡ (r0 + r1 es1 + r2 es1+s2)(r0 + r1 e−s1 + r2 e−s1−s2). (3.4)

Then for any φ1, φ2,

Re[R2(s1 + iφ1, s2 + iφ2)]

= r2
0 + r2

1 + r2
2 + 2r0r1 cosh s1 cos φ1 + 2r1r2 cosh s2 cos φ2

+ 2r0r2 cosh(s1 + s2) cos(φ1 + φ2). (3.5)

If the three quantities φ1 φ2 and φ1 + φ2, all lie between −π/2 and π/2 then this expression
is positive and it is possible to move the contour of integration from

∫∞
−∞ ds1

∫∞
−∞ ds2 to∫∞+iφ1

−∞+iφ1
ds1
∫∞+iφ2

−∞+iφ2
ds2.

For x>a, y>0 one has 0 < θ1 < π/2 and π/2 < θ2 < π −θ1 < π (note that θ2 is oriented
clockwise whereas θ1 is oriented the usual way) so one can take π/2 < θ2 < π − θ1 < π and
π/2 < θ2 < π − θ1 < π and satisfy the constraints above.

For −a < x < a, y > 0 one has 0 < θ1 < π/2 and 0 < θ2 < π/2 so for any α with
0 < α < π/2 one can take φ1 = −θ1 + α and φ2 = −θ2 + π/2 − α and satisfy the constraints
above. (Later α will be specified as 0 or π/2 for different pieces of the formula).

For x < −a, y > 0 one has π/2 < θ1 < π − θ2 < π and 0 < θ2 < π/2 and so one can
take φ1 = −θ1 and φ2 = −θ2 + π/2 and satisfy the constraints above.

Define

gM(s) ≡ 1

(2Mπ + is)2 − π2
. (3.6)
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Then, moving the contours of integration with the shifts φi just stated, followed by the change
of variables si + iθi → si yields a set of formulae with the only position dependence in the
exponent.

For x > a, y > 0,

E
(x>a,y>0)

12 = 1

2πt

∫ ∞

a

dx

∫ ∞

0
dy

∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2

× exp

[
− 1

2t
R2(s1 − iθ1, s2 − iθ2)

]
gM1(s1)gM2(s2). (3.7)

For −a < x < a, y > 0,

E
(−a<x<a,y>0)

12 = 1

2πt

∫ a

−a

dx

∫ ∞

0
dy

∫ ∞+iα

−∞+iα
ds1

∫ ∞−iα+iπ/2

−∞−iα+iπ/2
ds2

× exp

[
− 1

2t
R2(s1 − iθ1, s2 − iθ2)

]
gM1(s1)gM2(s2). (3.8)

For x < −a, y > 0,

E
(x<−a,y>0)

12 = 1

2πt

∫ −a

−∞
dx

∫ ∞

0
dy

∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2

× exp

[
− 1

2t
R2(s1 − iθ1, s2 − iθ2)

]
gM1(s1)gM2(s2). (3.9)

Now using the fact that r0 exp iθ1 = x + a + iy and r2 exp i(π − θ2) = x − a + iy,

R2(s1 − iθ1, s2 − iθ2)]

≡ (r0 + r1 es1−iθ1 + r2 es1−iθ1+s2−iθ2)(r0 + r1 e−s1+iθ1 + r2 e−s1+iθ1−s2+iθ2)

= −4


(x sinh

s1 + s2

2
− a sinh

s1 − s2

2

)2

+

(
y sinh

s1 + s2

2
+ 2ia cosh

s1

2
cosh

s2

2

)2

 (3.10)

so the in all cases the x and y integrals separate and the y one, having the same limits for all
cases, can usefully be evaluated. Define

χ(s1, s2) ≡ 1

2πt

∫ ∞

0
dy exp

[
2

t

(
y sinh

s1 + s2

2
+ 2ia cosh

s1

2
cosh

s2

2

)2
]

gM1(s1)gM2(s2)

=
(

i

√
t

2

)
1

sinh s1+s2
2

√
π

2
Erfc

(
λ cosh

s1

2
cosh

s2

2

)
gM1(s1)gM2(s2) (3.11)

where λ ≡ 2a
√

2/t . (Note that convergence is assured because Im 1
2 (s1 + s2) = π/4 and for

any real u, sinh(u + iπ/4) = −i(−cosh u + i sinh u)/
√

2, which lies within an angle π/4 of
the positive imaginary axis, so sinh2

(
1
2 (s1 + s2)

)
has a negative real part). Also the x integrals

can be standardized by setting i
√

2/t(x sinh[(s1 + s2)/2] − a sinh[(s1 − s2)/2]) and inserting
appropriate limits in the equation∫

dx exp

[
2

t

(
x sinh

s1 + s2

2
− a sinh

s1 − s2

2

)2
]

=
(

−i

√
t

2

)
1

sinh s1+s2
2

∫
dx ′ exp(−x ′2).

(3.12)



2924 O Giraud et al

The three contributions may be thus be written as follows:
For x > a, y > 0,

E
(x>a,y>0)

12 =
∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2 χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ i∞ sinh s1+s2
2

iλ cosh(s1/2) sinh(s2/2)

dx ′ exp(−x ′2)

)
. (3.13)

For −a < x < a, y > 0,

E
(−a<x<a,y>0)

12 =
∫ ∞+iα

−∞+iα
ds1

∫ ∞+i(π/2−α)

−∞+i(π/2−α)

ds2 χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ iλ cosh(s1/2) sinh(s2/2)

−iλ sinh(s1/2) cosh(s2/2)

dx ′ exp(−x ′2)
)

=
∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2 χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ iλ cosh(s1/2) sinh(s2/2)

0
dx ′ exp(−x ′2)

)

+
∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2 χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ −iλ sinh(s1/2) cosh(s2/2)

0
dx ′ exp (−x ′2)

)
. (3.14)

For x < −a, y > 0,

E
(x<−a,y>0)

12 =
∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2 χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ −iλ cosh(s1/2) sinh(s2/2)

−i∞ sinh s1+s2
2

dx ′ exp(−x ′2)

)
. (3.15)

All these combine to give

E
(y>0)

12 =
(∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2 +

∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2

)
χ(s1, s2)

(
−i

√
t

2

)

× 1

sinh s1+s2
2

(∫ i∞ sinh s1+s2
2

0
dx ′ exp(−x ′2)

)
. (3.16)

Now the limit i ∞ sinh((s1 + s2)/2) can be taken as −∞ because Im(s1 + s2)/2 = π/4 and
i sinh(u + iπ/4) = (−cosh u + i sinh u)/

√
2 which lies within an angle π/4 of the negative

real axis. Thus the x′ integral yields −√
π/2. Inserting the definition of χ , finally, since

E = E12 + E21,

E(y>0) = −1

8

(∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2 +

∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2

)

×gM1(s1)gM2(s2)

sinh2
(

s1+s2
2

) Erfc
(
λ cosh s1

2
cosh

s2

2

)
. (3.17)

For y < 0 the symbol iπ/2 in the limits is replaced by −iπ/2.
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3.1.2. Reduction of the odd-term O. The first step here is to perform the following change
of variables: {

s1 + s3 → s1

s1 − s3 → s3.
(3.18)

This change of variables will prove convenient later on, and it has the physical interpretation
that the complex angle s1 associated with the first scatter in the solution term is the sum of the
complex angles s1 and s3 (in equation (3.2), i.e. before the changes of variables) associated
with the first and the last scatters in the odd term.

The strategy then is to perform the integration over θ . Only the diffraction coefficient
depends on θ ; its integration gives

∫ 2π

0
dθ

∞∑
N=−∞

1(−θ + 2Nπ + i s1+s3
2

)2 − π2
gM2(s2)

1(
θ + 2(M1 − N)π + i s1−s3

2

)2 − π2

= gM2(s2)

∫ ∞

−∞
dθ

1(−θ + i s1+s3
2

)2 − π2

1(
θ + 2M1π + i s1−s3

2

)2 − π2
. (3.19)

There are four poles in the right-hand side integrand, at ±π + i(s1 + s3)/2 and (2M1 ± 1)π +
i(s1 − s3)/2. Closing the contour of the integral over θ at infinity, we can see that the value of
the integral is 0 if s2

1 < s2
3 , and

i sgn(s1)gM2(s2)

(
1

2M1π + is1

1

2(M1 + 1)π + is1
− 1

2(M1 − 1)π + is1

1

2M1π + is1

)
(3.20)

otherwise. Taking into account the Jacobian 1
2 yielded by the change of variables (3.18), the

odd term is equal to

O12 = 1

4πt

∫ ∞

0
dr r

∫ ∞

−∞
ds1

∫ ∞

−∞
ds2

∫ s1

−s1

ds3

× exp

[
− 1

2t
R2

(
s1 + s3

2
, s2,

s1 − s3

2

)]
gM2(s2)hM1(s1) (3.21)

where we have introduced

hM1(s1) ≡ i

(
1

2M1π + is1

1

2(M1 + 1)π + is1
− 1

2(M1 − 1)π + is1

1

2M1π + is1

)

= i
(
gM1(s1 − iπ) − gM1(s1 + iπ)

)
. (3.22)

The integral over s3 and r in (3.21) can be reduced: since r0 = r3 = r and r1 = r2 = 2a,

R2

(
s1 + s3

2
, s2,

s1 − s3

2

)
= 16a2 cosh2 s2

2

+ 16ar cosh
s2

2
cosh

s1 + s2

2
cosh

s3

2
+ 4r2 cosh2 s1 + s2

2
(3.23)

and appendix A then yields∫ s2

−s2

ds3

∫ ∞

0
dr r exp

[
− 1

2t
R2

(
s1 + s3

2
, s2,

s1 − s3

2

)]
= t

cosh2 s1+s2
2

	(s1,s2) (3.24)
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where as previously we have set λ = 2a
√

2/t , and

	(s1, s2) ≡
∫ ∞

1
dz exp

(
−λ2

(
cosh2 s2

2

)
z2
) sinh s1

2

z

√
z2 + sinh2 s1

2

. (3.25)

The odd term is therefore equal to

O12 = i

4π

∫ ∞

−∞
ds1

∫ ∞

−∞
ds2

1

cosh2 s1+s2
2

gM2(s2)(gM1(s1 − iπ) − gM1(s1 + iπ))	(s1, s2).

(3.26)

In the s1 complex plane, the contour of integration can be freely moved between Im(s1) = −π

and Im(s1) = π because there are no poles and the integral is convergent. Therefore, we pull
the contour of the gM1(s1 − iπ) part to integrate s1 from −∞ + iπ/2 to ∞ + iπ/2, and the
contour of the gM1(s1 + iπ) part to integrate s1 from −∞− iπ/2 to ∞− iπ/2. Then changing
the variable s1 to s1 − iπ in the gM1(s1 − iπ) part, and s1 to s1 + iπ in the gM1(s1 + iπ) part we
obtain

O12 = i

4π

(∫ ∞+iπ/2

−∞+iπ/2
+
∫ ∞−iπ/2

−∞−iπ/2

)
ds1

∫ ∞

−∞
ds2

1

sinh2 s1+s2
2

gM1(s1)gM2(s2)ψ(s1, s2) (3.27)

where we have introduced

ψ(s1, s2) =
∫ ∞

1
dr exp

(
−λ2

(
cosh

s2

2

)2
r2

)
cosh s1

2

r

√
r2 − cosh2 s1

2

(3.28)

which verifies 	(s1 + iπ, s2) = iψ(s1, s2) and 	(s1 − iπ, s2) = −iψ(s1, s2). We change the
variable r to u with r = cosh s1

2 / cosh u
2 in the integral defining ψ , and cut it into two pieces.

Using appendix C for the second piece, we get∫ ∞

cosh s1
2

dr exp

(
−λ2

(
cosh

s2

2

)2
r2

)
cosh s1

2

r

√
r2 − cosh2 s1

2

= π

2
Erfc

(
λ cosh

s1

2
cosh

s2

2

)
.

(3.29)

The first piece (the remaining integral from 1 to cosh s1
2 ) is equal to + i

2ϕ(s1, s2) if
Im(s1) = +π/2 and − i

2ϕ(s1, s2) if Im(s1) = −π/2, with

ϕ(s1, s2) ≡
∫ s1

0
du exp

(
−λ2

(
cosh s1

2

)2 (
cosh s2

2

)2
cosh2 u

2

)
. (3.30)

The Erfc term is exactly the opposite of the even term given by equation (3.17). The remaining
integral gives a term

T12 = i

8π

(∫ ∞+iπ/2

−∞+iπ/2
ds1 −

∫ ∞−iπ/2

−∞−iπ/2
ds1

)∫ ∞

−∞
ds2

1

sinh2 s1+s2
2

gM1(s1)gM2(s2)ϕ(s1, s2)

(3.31)

and the integral over s1 (provided we close it at infinity) is an integral over a closed loop
performed clockwise. The only pole of the integrand with an imaginary part between
−iπ/2 and iπ/2 is s1 = −s2, coming from the term 1/ sinh2 s1+s2

2 . Since this loop encompasses
only this pole, the value of the integral over s1 is equal to −2iπ times the residue of the integrand
taken at this pole. We will now evaluate it.
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Let us note ∂iϕ the derivative of ϕ with respect to the ith variable. Since the pole s1 = −s2

is of order 2 the residue is

∂

∂s1

(
(s1 + s2)

2

sinh2 s1+s2
2

gM1(s1)ϕ(s1, s2)

)∣∣∣∣∣
s1=−s2

= 4
∂

∂s1

(
gM1(s1)ϕ(s1, s2)

)∣∣
s1=−s2

= 4
(
g′

M1
(−s2)ϕ(−s2, s2) + gM1(−s2)∂1ϕ(−s2, s2)

)
(3.32)

and therefore

T12 =
∫ ∞

−∞
ds2 gM2(s2)

(
g′

M1
(−s2)ϕ(−s2, s2) + gM1(−s2)∂1ϕ(−s2, s2)

)

=
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM2(s2)

(
g′

M1
(s1)ϕ(s1, s2) + gM1(s1)∂1ϕ(s1, s2)

)
. (3.33)

We have to calculate the sum T = T12 + T21. It is the sum of two terms: T = A + B, where

A ≡
∫ ∞

−∞
ds1 ds2

(
g′

M1
(s1)gM2(s2)ϕ(s1, s2) + gM1(s1)g

′
M2

(s2)ϕ(s2, s1)
)
δ(s1 + s2)

=
∫ ∞

−∞
ds1 ds2

(
g′

M1
(s1)gM2(s2) − gM1(s1)g

′
M2

(s2)
)
δ(s1 + s2)ϕ(s1, s2). (3.34)

We have used the fact that when s1 + s2 = 0, ϕ is transformed into its opposite when s1 and s2

are exchanged. Integrating by parts gives

A = −
∫ ∞

−∞
ds1 ds2 gM1(s1)gM2(s2)

(
∂

∂s1
− ∂

∂s2

)
{δ(s1 + s2)ϕ(s1, s2)}

= −
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2)(∂1ϕ(s1, s2) − ∂2ϕ(s1, s2)). (3.35)

The second term in T is

B ≡
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2)(∂1ϕ(s1, s2) + ∂1ϕ(s2, s1))

= 2
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2)∂1ϕ(s1, s2) (3.36)

(because ∂1ϕ is invariant by exchange of its variables when s1 + s2 = 0). Therefore A + B is

T =
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2)(∂1ϕ(s1, s2) + ∂2ϕ(s1, s2)). (3.37)

It is straightforward to compute the sum of the two partial derivatives of ϕ taken at s1 = −s2.
It yields exp(−λ2 cosh2(s2/2)), and finally

T =
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2) exp

(
−λ2 cosh2 s2

2

)
. (3.38)
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3.1.3. Calculation of the shrunk-loop term S. In the shrunk-loop term, the two paths have a
length r1 = r2 = 2a, therefore

S =
∫ ∞

−∞
ds1 ds2 δ(s1 + s2) exp

(
−2a2

t
(1 + es1)(1 + e−s1)

)
gM1(s1)gM2(s2)

=
∫ ∞

−∞
ds1 ds2 δ(s1 + s2)gM1(s1)gM2(s2) exp

(
−λ2 cosh2 s1

2

)
(3.39)

and therefore S = T = O + E.

3.2. 2n scatter case

We follow the case n = 1. The shrunk loop theorem states in the general case that∑
cyclic
perm

E12···2n +
∑
cyclic
perm

O12···2n = S[M1M2···M2n] (3.40)

where S[M1M2···M2n] is given by (2.8),

E12···2n =
∫ ∞

−∞

dx dy

2πt

∫ ∞

−∞
ds1 ds2 · · · ds2n

× exp

[
− 1

2t

(
2n∑

k=0

rk es1+s2+···+sk

)(
2n∑

k=0

rk e−s1−s2−···−sk

)]

× 1

(2M1π + i(s1 + iθ1))2 − π2

×
2n−1∏
k=2

1

(2Mkπ + isk)2 − π2

1

(2M2nπ + i(s2n + iθ2))2 − π2
(3.41)

and

O12···2n =
∫ ∞

0

∫ 2π

0

r dr dθ

2πt

∫ ∞

−∞
ds1 ds2 · · · ds2n ds2n+1

× exp

[
− 1

2t

(
2n+1∑
k=0

rk es1+s2+···+sk

)(
2n+1∑
k=0

rk e−s1−s2−···−sk

)]

×
∑
N

1

(2Nπ + i(s1 + iθ))2 − π2

×
2n∏

k=2

1

(2Mkπ + isk)2 − π2

1

(2(M1 − N)π + i(s2n+1 − iθ))2 − π2
(3.42)

the symbols having the same meaning than in the two-scatter case (and in the even term,
r1 = · · · = r2n−1 = 2a, and in the odd term, r1 = · · · = r2n = 2a). The summation in (3.40)
is over all cyclic permutations of the indices (1, 2, . . . , 2n). The proof will follow the same
steps as in the two-scatter case. We set E =∑ cyclic

perm
E12···2n and O =∑ cyclic

perm
O12···2n.

3.2.1. Reduction of the even-term E. Starting from equation (3.41), if we change variables
s1 + iθ1 to s1 and s2n + iθ2 to s2n, we get
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E12···2n =
∫ ∞

−∞

dx dy

2πt

∫ ∞+iθ1

−∞+iθ1

ds1

∫ ∞

−∞
ds2 · · · ds2n−1

∫ ∞+iθ2

−∞+iθ2

ds2n exp

(
−R2

2t

) 2n∏
k=1

gk(sk)

(3.43)

where gk(sk) ≡ gMk
(sk) is given by equation (3.6) and R2 can now be written

R2 = −4

(
x sinh τ2n − a

2n∑
k=1

sinh τk

)2

− 4

(
y sinh τ2n + ia

2n∑
k=1

cosh τk

)2

. (3.44)

We have introduced the quantities

τk = (s1 + s1 + · · · + sk) − (sk+1 + · · · + s2n)

2
0 � k � 2n. (3.45)

We can move the contour of the integrals over s1 and s2n, and integrate over x and y, following
the case n = 1. Introducing µ ≡ a

√
2/t = λ/2, we obtain

1

2n

∑
cyclic
perm

E
y>0
12···2n = − 1

16

(∫ ∞

−∞
ds1

∫ ∞+iπ/2

−∞+iπ/2
ds2n +

∫ ∞+iπ/2

−∞+iπ/2
ds1

∫ ∞

−∞
ds2n

)

×
∫ ∞

−∞
ds2 · · · ds2n−1

1

sinh2 τ2n

2n∏
k=1

gk(sk)Erfc

(
µ

2n∑
k=1

cosh τk

)
(3.46)

and the same formula for y < 0 with +iπ/2 replaced by −iπ/2 in the limits of the integral.

3.2.2. Reduction of the odd-term O. After having done the change of variables:{
s1 + s2n+1 → s1

s1 − s2n+1 → s2n+1
(3.47)

the integration over the angle θ can be performed exactly the same way as in the equations
leading to equation (3.21). We get

O12···2n = i

4πt

∫ ∞

0
dr r

∫ ∞

−∞
ds2 · · · ds2n

∫ s1

−s1

ds2n+1

× exp

(
−R2

2t

) 2n∏
k=2

gk(sk)[g1(s1 − iπ) − g1(s1 + iπ)] (3.48)

with

R2 = R2

(
s1 + s2n+1

2
, s2, s3, . . . , s2n,

s1 − s2n+1

2

)

= 4r2 cosh2 τ2n + 8ar cosh τ2n

2n∑
k=1

cosh

(
τk − s1 − s2n+1

2

)
+ 4a2

(
2n∑

k=1

eτk

)(
2n∑

k=1

e−τk

)
.

(3.49)

It is convenient to introduce the following quantities:


2 ≡
(

2n∑
k=1

eτk

)(
2n∑

k=1

e−τk

)
=
(

2n∑
k=1

cosh τk

)2

−
(

2n∑
k=1

sinh τk

)2

(3.50)
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and 


cosh
ξ(s1, s2, . . . , s2n)

2
= 1




2n∑
k=1

cosh τk

sinh
ξ(s1, s2, . . . , s2n)

2
= 1




2n∑
k=1

sinh τk.

(3.51)

Using appendix B, we can change the double integral over r and s2n+1 to a single integral.
Setting µ ≡ a

√
2/t , we have∫ s1

−s1

ds2n+1

∫ ∞

0
dr r exp

(
−R2

2t

)

= t

2 cosh2 τ2n

∫ s1

−s1

ds2n+1

∫ ∞

0
dr r exp

[
−
(
µ2
2 + 2µr

2n∑
k=1

cosh

(
τk − s1 − s2n+1

2

)
+ r2

)]

= t

2 cosh2 τ2n

(	(s1, s2, . . . , s2n) − 	(−s1, s2, . . . , s2n)) (3.52)

where

	(s1, s2, . . . , s2n) ≡
∫ ∞

1
dz e−µ2
2z2 sinh ξ(s1,s2,...,s2n)

2

z

√
z2 + sinh2 ξ(s1,s2,...,s2n)

2

. (3.53)

The odd term then reads

O12···2n = i

8π

∫ ∞

−∞
ds1 · · · ds2n

1

cosh2 τ2n

2n∏
k=2

gk(sk)

×(g1(s1 − iπ) − g1(s1 + iπ))(	(s1, s2, . . . , s2n) − 	(−s1, s2, . . . , s2n)).

(3.54)

Then we pull down the contour of the g1(s1 − iπ) part of the odd term so that s1 is integrated
from −∞ + iπ/2 to ∞ + iπ/2, and replace s1 + iπ by s1; similarly we pull up the contour
of the g1(s1 + iπ) part so that s1 is now integrated from −∞ − iπ/2 to ∞ − iπ/2, and then
replace s1 − iπ by s1. If we define

ψ(s1, s2, . . . , s2n) ≡
∫ ∞

1
dr e−µ2
2r2 cosh ξ(s1,s2,...,s2n)

2

r

√
r2 − cosh2 ξ(s1,s2,...,s2n)

2

(3.55)

then 	(s1 + iπ, s2, . . . , s2n) = iψ(s1, s2, . . . , s2n) (because 	 and ψ are functions of the τk ,
and all the τk contain the term +s1/2). Therefore we can write

O12···2n = 1

8π

(∫ ∞+iπ/2

−∞+iπ/2
ds1 +

∫ ∞−iπ/2

−∞−iπ/2
ds1

)∫ ∞

−∞
ds2 ds3 · · · ds2n

1

sinh2 τ2n

2n∏
k=1

gk(sk)

×(ψ(s1, s2, . . . , s2n) + ψ(−s1, s2, . . . , s2n)). (3.56)

Changing the variable r to u with r = cosh ξ

2 / cosh u
2 in the integral defining ψ (ξ stands for

ξ(s1, s2, . . . , s2n)), and then using appendix c, we get for the part of the integral going from
cosh ξ/2 to ∞∫ ∞

cosh ξ

2

dr e−µ2
2r2 cosh ξ

2

r

√
r2 − cosh2 ξ

2

= π

2
Erfc (µ
ξ) = π

2
Erfc

(
µ

2n∑
k=1

cosh τk

)
. (3.57)
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The remaining integral from 1 to cosh ξ

2 is equal to + i
2ϕ(s1, s2, . . . , s2n) if Im(s1) = +π/2 and

− i
2ϕ(s1, s2, . . . , s2n) if Im(s1) = −π/2, with

ϕ(s1, s2, . . . , s2n) ≡
∫ ξ

0
du exp

(
−µ2

(∑2n
k=1 cosh τk

)2
cosh2 u

2

)
. (3.58)

The Erfc term exactly cancels the ‘symmetrized’ even-term 1
2n

∑
E12···2n given by

equation (3.46) provided it is summed over cyclic permutations on all indices. The remaining
part is

T =
∑
cyclic
perm

i

16π

(∫ ∞+iπ/2

−∞+iπ/2
ds1 −

∫ ∞−iπ/2

−∞−iπ/2
ds1

)∫ ∞

−∞
ds2 · · · ds2n

1

sinh2 τ2n

2n∏
k=1

gk(sk)

×(ϕ(s1, s2, . . . , s2n) − ϕ(−s1, s2, . . . , s2n)). (3.59)

The integral over s1 is again a loop that encompasses only one pole corresponding to
sinh τ2n = 0, the pole

s1 = −(s2 + · · · + s2n). (3.60)

Computing the residue as in equation (3.32) and replacing the condition (3.60) by an integral
over a delta function we get

T =
∑
cyclic
perm

1

2

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

2n∏
k=2

gk(sk)

×
[
g′

1(s1)(ϕ(s1, s2, . . . , s2n) − ϕ(−s1, s2, . . . , s2n))

+ g1(s1)
∂

∂s1
(ϕ(s1, s2, . . . , s2n) − ϕ(−s1, s2, . . . , s2n))

]
(3.61)

which is a sum of two terms: T = A + B, where A is given by equation (3.62) and B by
equation (3.65). Let us calculate both terms. We have

A ≡
∑
cyclic
perm

1

2

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

×
2n∏

k=2

gk(sk)g
′
1(s1)(ϕ(s1, s2, . . . , s2n) − ϕ(−s1, s2, . . . , s2n))

=
∑
cyclic
perm

1

2

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

×
2n∏

k=2

gk(sk)g
′
1(s1)(ϕ(s1, s2, . . . , s2n) − ϕ(s2, s3 · · · , s2n, s1)) (3.62)

because when s1 + s2 + · · · + s2n = 0 we have ϕ(s2, s3, . . . , s2n,−s1) = ϕ(s1, s2, . . . , s2n).
Integrating by parts over s1 (or the corresponding sk in the other permutations) we get
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A = −1

2

∫ ∞

−∞
ds1 · · · ds2n

2n∏
k=1

gk(sk)


δ(s1 + s2 + · · · + s2n)

×
∑
cyclic
perm

∂

∂s1
(ϕ(s1, s2, . . . , s2n) − ϕ(s2, s3 · · · , s2n, s1))

+ δ′(s1 + s2 + · · · + s2n)
∑
cyclic
perm

(ϕ(s1, s2, . . . , s2n) − ϕ(s2, s3 · · · , s2n, s1))


 .

(3.63)

The sum over all cyclic permutations in the second line is obviously equal to 0; gathering the
remaining terms differently together we obtain

A = −1

2

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

×
2n∏

k=1

gk(sk)
∑
cyclic
perm

(∂firstϕ(s1, s2, . . . , s2n) − ∂lastϕ(s1, s2, . . . , s2n)) (3.64)

where ∂firstϕ and ∂lastϕ are the derivatives of ϕ with respect to the first and the last variables.
The second term in T is

B ≡ 1

2

∑
cyclic
perm

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

×
2n∏

k=1

gk(sk)(∂firstϕ(s1, s2, . . . , s2n) + ∂firstϕ(−s1, s2, . . . , s2n)). (3.65)

Using the fact that when (3.60) holds we have ∂firstϕ(−s1, s2, . . . , s2n) =
∂firstϕ(s2, s3, . . . , s2n, s1), and rearranging the sums, we get for T = A + B

T = 1

2

∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

×
2n∏

k=1

gk(sk)
∑
cyclic
perm.

(∂firstϕ(s1, s2, . . . , s2n) + ∂lastϕ(s1, s2, . . . , s2n)). (3.66)

Let us calculate the partial derivatives of ϕ with respect to the first and the last variables when
the condition s1 + s2 + · · · + s2n = 0 holds. Since ϕ is given by equation (3.58), we have

∂

∂si

ϕ(s1, s2, . . . , s2n) = ∂ξ

∂si

exp(−µ2
2) +
∫ ξ

0
du

∂

∂si

exp

(
−µ2

(∑2n
k=1 cosh τk

)2
cosh2 u

2

)
.

(3.67)

Since the τk all contain a term +s1/2 if the sum goes from 1 to 2n, and all contain a term
−s2n/2 if the sum goes from 0 to 2n − 1 (which is the same because cosh τ0 = cosh τ2n),
the derivatives ∂s1ϕ and ∂s2n

ϕ of the exp cancel. Furthermore 
 does not depend on s1
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(see equation (3.50)). The derivatives of ξ give, identifying the derivatives of both sides of
equation (3.51) and considering that s1 + s2 + · · · + s2n = 0,

∂ξ

∂s1
= 1 and

∂ξ

∂s2n

= −1 − 2




cosh ξ

2

sinh ξ

2

∂


∂s2n

. (3.68)

The derivative of 
 with respect to s2n has a simple expression when s1 + s2 + · · · + s2n = 0:
∂
/∂s2n = −sinh(ξ/2). Therefore

T =
∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

2n∏
k=1

gk(sk)
∑
cyclic
perm

cosh ξ

2



exp(−µ2
2). (3.69)

But when s1 + s2 + · · · + s2n = 0, 
 does not depend on the cyclic permutation of the sk . The
final step is to note that∑

cyclic
perm

cosh ξ

2



=
∑

cyclic
perm

∑2n
k=1 cosh τk


2
=
∑

cyclic
perm

∑2n
k=1 (eτk + e−τk )

2
(∑2n

k=1 eτk

)(∑2n
k=1 e−τk

) = 1. (3.70)

The final expression for E + O is therefore

E + O =
∫ ∞

−∞
ds1 · · · ds2n δ(s1 + s2 + · · · + s2n)

2n∏
k=1

gk(sk) exp(−µ2
2). (3.71)

3.2.3. Calculation of the shrunk-term S. The shrunk-term S[M1M2···M2n] has an argument in
its exponent equal to −R2/2t , where R is given by equation (2.7), that is

− 1

2t

(
2n∑

k=1

rk exp(s1 + · · · + sk)

)(
2n∑

k=1

rk exp[−(s1 + · · · + sk)]

)

= −2a2

t

(
2n∑

k=1

eτk

)(
2n∑

k=1

e−τk

)
= −µ2
2 (3.72)

and the result follows.
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Appendix A

This appendix shows that for all real α

I ≡
∫ s1

−s1

ds3

∫ ∞

0
dr r exp

(
−
(
α2 + 2αr cosh

s3

2
+ r2

))
= 2

∫ ∞

1
dz e−α2z2 sinh s1

2

z

√
z2 + sinh2 s1

2

.

(A.1)

Setting

z = 1

α

√
α2 + 2αr cosh

s3

2
+ r2 (A.2)
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we get

I = α

∫ s1

−s1

ds3

∫ ∞

1
dz

z√
z2 + sinh2 s3

2

(
−α cosh

s3

2
+ α

√
z2 + sinh2 s3

2

)
e−α2z2

= s1 e−α2
+

1

2

∫ ∞

1
dz
(−2α2z e−α2z2) ∫ s1

−s1

ds3
cosh s3

2√
z2 + sinh2 s3

2

. (A.3)

Now integrating the z integral by parts, the boundary term cancels the s1 e−α2
term, and

I = 1

2

∫ ∞

1
dz e−α2z2

∫ s1

−s1

ds3
z cosh s3

2(
z2 + sinh2 s3

2

)3/2 = 2
∫ ∞

1
dz e−α2z2 sinh s1

2

z

√
z2 + sinh2 s1

2

(A.4)

and the result follows.

Appendix B

Noticing that for any ϕ the quantity


2 =
(

2n∑
k=1

cosh(τk + ϕ)

)2

−
(

2n∑
k=1

sinh(τk + ϕ)

)2

(B.1)

does not depend on ϕ, we can set


cosh
ξ̂ (s2n+1)

2
= 1




2n∑
k=1

cosh

(
τk − s1 − s2n+1

2

)

sinh
ξ̂ (s2n+1)

2
= 1




2n∑
k=1

sinh

(
τk − s1 − s2n+1

2

) (B.2)

where ξ̂ stands for ξ̂ (s1, s2, . . . , s2n, s2n+1). This appendix shows that

In ≡
∫ s1

−s1

ds2n+1

∫ ∞

0
dr r exp

(
−
(

µ2
2 + 2µ
r cosh
ξ̂ (s2n+1)

2
+ r2

))

= 	(s1, s2, . . . , s2n) − 	(−s1, s2, . . . , s2n) (B.3)

where 	(s1, s2, . . . , s2n) is defined by

	(s1, s2, . . . , s2n) ≡
∫ ∞

1
dz e−µ2
2z2 sinh ξ(s1,s2,...,s2n)

2

z

√
z2 + sinh2 ξ(s1,s2,...,s2n)

2

. (B.4)

The change of variables

z = 1

µ


√
µ2
2 + 2µ
r cosh

ξ̂ (s2n+1)

2
+ r2 (B.5)

gives

In = µ


∫ s1

−s1

ds2n+1

∫ ∞

1
dz

z√
z2 + sinh2 ξ̂ (s2n+1)

2

×

−µ
 cosh

ξ̂ (s2n+1)

2
+ µ


√
z2 + sinh2 ξ̂ (s2n+1)

2


 e−µ2
2z2
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= s1 e−µ2
2
+

1

2

∫ ∞

1
dz
(−2µ2
2z e−µ2
2z2) ∫ s1

−s1

ds2n+1
cosh ξ̂ (s2n+1)

2√
z2 + sinh2 ξ̂ (s2n+1)

2

. (B.6)

Now integrating the r integral by parts, the boundary term cancels the s1 exp(−µ2
2) term,
and

In = 1

2

∫ ∞

1
dz e−µ2
2z2

∫ s1

−s1

ds2n+1
z cosh ξ̂ (s2n+1)

2(
z2 + sinh2 ξ̂ (s2n+1)

2

)3/2

=
∫ ∞

1
dz e−µ2
2z2


 sinh ξ̂ (s2n+1)

2

z

√
z2 + sinh2 ξ̂ (s2n+1)

2




s1

−s1

(B.7)

and the result follows since ξ̂ (s1) = ξ̂ (s1, s2, . . . , s2n, s1) = ξ(s1, s2, . . . , s2n) and ξ̂ (−s1) =
ξ(−s1, s2, . . . , s2n).

Appendix C

This appendix shows that for all real α

i

π

∫ iπ

0
du exp

(
− α2

cosh2 u
2

)
= −Erfc(α). (C.1)

Let us define

J ≡
∫ iπ

0
du exp

(
− α2

cosh2 u
2

)
= 2i

∫ π/2

0
du exp

(
− α2

cos2 u

)
. (C.2)

Changing variables from u to t = tan u, we get

J = 2i
∫ ∞

0
dt

1

1 + t2
exp[−α2(1 + t2)]. (C.3)

Replacing 1/(1 + t2) by
∫∞

0 dτ exp[−τ(1 + t2)] and performing the integral over t we get

J = i
√

π

∫ ∞

0
dτ

exp[−(τ + α2)]√
τ + α2

(C.4)

which gives I = iπErfc(α) after having set u =
√

τ + α2.
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